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Abstract— My paper consists of master side arbitration and slave side arbitration in a system. Based on AMBA AHB protocol, the adaptive dynamic 

arbitration scheme is being implemented on the slave side arbitration. The multilayered advanced high-performance bus (ML-AHB) bus matrix is an 
interconnection between multiple masters and multiple slaves in a system. The master and the slave communicate in terms of request and grant signals.  
The master merely starts a burst transaction and waits for the slave response to proceed to the next transfer. However, the ML-AHB busmatrix of ARM 
offers only transfer-based fixed-priority and round-robin arbitration schemes. In fixed priority arbitration scheme, each master is assigned a fixed priority 
value. It is simple in implementation and has small area cost. But in heavy communication traffic, master that has low priority value cannot get a grant 
signal. In round robin arbitration scheme, each master is allotted a fixed time slot. If the new master sends a request in between, then that master has to 
wait until all masters completetheir tasks. In Adaptive Dynamic arbitration scheme, the design and implementation of a flexible arbiter for the ML-AHB 
busmatrix is to support three priority policies—fixed priority, round robin, and dynamic priority and three data multiplexing modes—transfer, transaction,  
and desired transfer length. The slave side arbiter dynamically selects one of the three possible arbitration schemes based upon the priority-level notifi-
cations and the desired transfer length from the masters so that arbitration leads to the maximum performance. The area overhead of the adaptive dy-
namic arbitration scheme will be 9%--25% larger than those of the other arbitration schemes and improves the throughput by 14%–62% compared to 
other schemes. There are totally nine arbitration schemes. Among the nine arbitration schemes, the adaptive dynamic arbitration scheme is the efficient 
one and the master which has accessed the bandwidth less number of times will be given highest priority and will get the grant signals. 
 

Index Terms— Multilayer AHB (ML-AHB) busmatrix, on-chip bus, self-motivated (SM) arbitration scheme, slave-side arbitration, system-on-a-chip 

(SoC).  

——————————      —————————— 

1 INTRODUCTION                                                                     

he on-chip bus plays a key role in the system-on-a-

chip (SoC) design by enabling the efficient inte-
gration of heterogeneous system components 

such as CPUs, DSPs, application-specific cores, 
memories, and custom logic. Recently, as the level 
of design complexity has become higher, SoC de-
signs require a system bus with high bandwidth to 
perform multiple operations in parallel. To solve 
the bandwidth problems, there have been several 
types of high-performance on-chip buses pro-
posed, such as the multilayer AHB (ML-AHB) 
busmatrix from ARM, the PLB crossbar switch 
from IBM, and CONMAX from Silicore. Among 
them, the ML-AHB busmatrix has been widely 
used in many SoC designs. This is because of the 
simplicity of the AMBA bus of ARM, which at-
tracts many IP designers, and the good architecture 
of the AMBA bus for applying embedded systems 
with low power. The ML-AHB busmatrix is an 
interconnection scheme based on the AMBA AHB 
protocol, which enables parallel access paths be-
tween multiple masters and slaves in a system. 
This is achieved by using a more complex inter-
connection matrix and gives the benefit of both 
increased overall bus bandwidth and a more flexi-
ble system structure. In particular, the ML-AHB 
busmatrix uses slave-side arbitration. Slave-side 
arbitration is different from master-side arbitration 
in terms of request and grant signals since, in the 
former, the master merely starts a burst transaction 
and waits for the slave response to proceed to the 

next transfer. Therefore, the unit of arbitration can 
be a transaction or a transfer. The transaction-
based arbiter multiplexes the data transfer based 
on the burst transaction, and the transfer-based 
arbiter switches the data transfer based on a single 
transfer. However, the ML-AHB busmatrix of 
ARM presents only transfer- based arbitration 
schemes, i.e., transfer based fixed-priority and 
round-robin arbitration schemes. This limitation on 
the arbitration scheme may lead to degradation of 
the system performance because the arbitration 
scheme is usually dependent on the application 
requirements; recent applications are likewise be-
coming more complex and diverse. By implement-
ing an efficient arbitration scheme, the system per-
formance can be tuned to better suit applications. 
For a high-performance on-chip bus, several stud-
ies related to the arbitration scheme have been 
proposed, such as table-lookup-based crossbar 
arbitration, two-level time-division  multiplexing 
(TDM) scheduling, token-ring mechanism, dynam-
ic bus distribution algorithm, and LOTTERYBUS. 
However, these approaches employ master-side 
arbitration. Therefore, they can only control priori-
ty policy and also present some limitations when 
handling the transfer-based arbitration scheme 
since master-side arbitration uses a centralized 
arbiter. In contrast, it is possible to deal with the 
transfer-based arbitration scheme as well as the 
transaction- based arbitration scheme in slave-side 
arbitration. In this paper, we propose a flexible 
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arbiter based on the adaptive-dynamic (AD) arbi-
tration scheme for the ML-AHB busmatrix.  
 

 
Fig. 1. Overall structure of the ML-AHB busmatrix 
of ARM . 
 

Our AD arbitration scheme has the follow-
ing advantages:  

1) It can adjust the processed data unit;  
2) it changes the priority policies during 

runtime; and  
3) it is easy to tune the arbitration scheme 

according to the characteristics of the target appli-
cation.  

Hence, our arbiter is able to not only deal 
with the transfer-based fixed-priority, round-robin, 
and dynamic-priority arbitration schemes but also 
manage the transaction-based fixed-priority, 
round-robin, and dynamic-priority arbitration 
schemes. Furthermore, our arbiter provides the 
desired-transfer-length-based fixed-priority, 
round-robin, and dynamic-priority arbitration 
schemes. In addition, the proposed AD arbiter se-
lects one of the nine possible arbitration schemes 
based on the priority-level notifications and the 
desired transfer length from the masters to ensure 
that the arbitration leads to the maximum perfor-
mance. In Section II, we briefly explain the arbitra-
tion schemes for the ML-AHB busmatrix of ARM, 
while Section III describes an implementation 
method for our flexible arbiter based upon the AD 
arbitration scheme for the ML-AHB busmatrix. We 
then present implementation results and perfor-
mance analysis in Section IV, simulation results in 
Section V and concluding remarks in Section VI. 

 

2   ARBITRATION SCHEMES FOR THE 

ML-AHB BUSMATRIX OF ARM 

 
The ML-AHB busmatrix of ARM consists of the 
input stage, decoder, and output stage, including 
an arbiter. Fig. 1 shows the overall structure of the 
ML-AHB busmatrix of ARM. The input stage is 
responsible for holding the address and control 
information when transfer to a slave is not able to 
commence immediately. The decoder determines 
which slave that a transfer is destined for. The out-
put stage is used to select which of the various 
master input ports is routed to the slave. Each out-
put stage has an arbiter. The arbiter determines 
which input stage has to perform  
a transfer to the slave and decides which the high-
est priority is currently. The ML-AHB busmatrix 
employs slave-side arbitration, in which the arbi-
ters are located in front of each slave port, as 
shown in Fig. 1. The master simply starts a transac-
tion and waits for the slave response to proceed to 
the next transfer. Therefore, the unit of arbitration 
can be a transaction or a transfer. However, the 
ML-AHB busmatrix of ARM furnishes only trans-
fer-based arbitration schemes, specifically transfer-
based fixed-priority and round-robin arbitration 
schemes. The transfer-based fixed-priority (round-
robin) arbiter multiplexes the data transfer based 
on a single transfer in a fixed-priority or round-
robin fashion. 

 

3   AD ARBITRATION SCHEME FOR THE 

ML-AHB BUSMATRIX 

 
An assumption is made that the masters can 
change their priority level and can issue the de-
sired transfer length to the arbiters in order to im-
plement a AD arbitration scheme. This assumption 
should be valid because the system developer gen-
erally recognizes the features of the target applica-
tions. For example, some masters in embedded 
systems are required to complete their job for giv-
en timing constraints, resulting in the satisfaction 
of system-level timing constraints. The computa-
tion time of each master is predictable, but it is not 
easy to foresee the data transfer time since the on-
chip bus is usually shared by several masters. Pre-
vious works solved this issue by minimizing the 
latencies of several latency-critical masters, but a 
side effect of these methods is that they can in-
crease the latencies of other masters; hence, they 



International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012                                                             3 

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

may violate the given timing constraints. Unlike 
existing works, our scheme can keep the latency 
close to its given constraint by adjusting the priori-
ty level and transfer length of the masters. Fig. 2 
shows an example.  

 
Fig. 2. Arbitration scheme examples in an embed-
ded system. (a) Arbitration scheme with no con-
sideration of the latency constraint. (b) Arbitration 
scheme minimizing latency. (c) AD arbitration 
scheme. 

 
In this example, the service latencies (latency-limit 
times) of M1, M2, and M3 are 4, 8, and 2 cycles 
(T14, T8, and T10), respectively. The requests for 
three masters are all initiated at T0, and M3 is the 
most latency-sensitive master. Fig. 2(a) shows an 
arbitration scheme that does not use latency con-
straints for arbitration. Therefore, M2 and M3 vio-
late the latency constraint as the masters are select-
ed in ascending order. Only M1 meets the con-
straint. Fig. 2(b) shows the scheduling of a typical 
latency- minimizing arbiter. It minimizes the laten-
cy of the most latency-sensitive module, namely, 
M3, causing M2 to violate its constraint. Although 
neither of these two arbitration schemes can meet 
the latency constraints for all three masters, in the 
AD arbitration shown in Fig. 2(c), all masters use 
the bus with no violations by configuring the prior-
ity levels (transfer lengths) of M1, M2, and M3 as 
the lowest, highest, and intermediate priorities (4, 
8, and 2), respectively. 
We use part of a 32-b address bus of the masters to 
inform the arbiters of the priority level and the 
desired transfer length of the masters. Fig. 3 shows 
the decoding information for our address bus. 
 

 
Fig. 3. Decoding information of the 32-b address 
bus. 
 
In Fig. 3, S_Number indicates the target slave 
number, P_Level means the priority level of a mas-
ter, T_Length denotes the desired transfer length of 
a master, and Offset_Add specifies the internal 
address of the target slave. Each of S_Number and 
P_Level consists of 3 b because the maximum 
number of master–slave sets is 8 8. Also, T_Length 
is composed of 4 b because the maximum number 
of burst lengths is 16. Although we used 7 b for 
P_Level and T_Length in the 32-b address bus to 
notify the arbiters of the priority level and the de-
sired transfer length of a master, we consider it 
adequate to express the internal address of a slave 
because the range of Offset_Add is from 0 to 222-1. 
Through the aforementioned assumption, the pri-
ority level and transfer length can then be changed 
by the AD demand of each master.  
 
Fig. 4 shows the internal structure of our arbiter 
based upon the AD arbitration scheme. 

 
Fig. 4. Internal structure of our arbiter. 
 
In Fig. 4, the NoPort signal means that none of the 
masters must be selected and that the address and 
control signals to the shared slave must be driven 
to an inactive state, while Master No. indicates the 
currently selected master number generated by the 
controller for the AD arbitration scheme. In gen-
eral, our arbiter consists of an RR block, a P block, 
two multiplexers, a counter, a controller, and two 
flip-flops. MUX_1 and MUX_2 are used to select 
the arbitration scheme and the desired transfer 
length of a master, respectively. A counter calcu-
lates the transfer length, with two flip-flops being 
inserted to avoid the attempts by the critical path 
to arbitrate. An RR block (P block) performs the 
round-robin- or priority-based arbitration scheme. 
Fig. 5 shows the internal process of an RR block.  
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Fig. 5. Internal process of the RR block. 
Initially, we create the up- and down-mask vectors 
(Up_Mask and Dn_Mask) based on the number of 
currently selected masters, as shown in Fig. 5. We 
then generate the up- or down-masked vector cre-
ated through bitwise AND-ing operation between 
the mask vector and the requested master vector. 
After generating the up- and down-masked vec-
tors, we examine each masked vector as to whether 
they are zero or not. If the up-masked vector is 
zero, the down-masked vector is inserted to the 
input parameter of the round-robin function; if it is 
not zero, the up-masked vector is the one inserted. 
A master for the next transfer is chosen by the 
round-robin function, and the current master is 
updated after 1 clock cycle. The RR block is then 
performed by repeating the arbitration procedure 
shown in Fig. 5. 

 

 
A master for the next transfer is selected, with the 
priority level of the least significant bit in 
Masked_Vector being the highest. If we modify the 
range of Masked_Vector to “0 to 
Masked_Vector’left,” then the priority level of the 
most significant bit in Masked_Vector becomes the 

highest.  

 
Fig. 6. Internal procedure of the P block. 

 
Fig. 6 shows the internal procedure of the P block. 
First of all, we create the highest priority vector (V) 
through the round-robin function. After generating 
the highest priority vector (V), the priority-level 
vectors and the highest priority vector (V) are in-
serted to the input parameters of the priority func-
tion. The master with the highest priority is chosen 
by the priority function, while the current master is 
updated after 1 clock cycle. The master with the 
highest priority is selected in Fig 6.  
 
A controller compares the priority levels of the 
requesting masters. If the masters have equal prior-
ities, the controller selects the round-robin arbitra-
tion scheme (RR block); in other cases, it chooses 
the priority arbitration scheme (P block). The con-
troller also makes the final decision on the master 
for the next transfer based on the transfer length of 
the selected master. The control process follows the 
following three steps.  
 
1) If HMASTLOCK is asserted, the same master 
remains selected. 
 
2) If HMASTLOCK is not asserted and the current-
ly selected master does not exist, the following 
hold. 

a) If no master is requesting access, the 
NoPort signal is asserted. 
b) Otherwise, a new master for the next transfer is 
initially selected. If the masters have equal priori-
ties, the round-robin arbitration scheme is selected; 
otherwise, the priority arbitration scheme is cho-
sen. In addition, the counter is updated based on 
the transfer length of the selected master. 
3) If none of the previous statements applies, the 
following hold. 
a) If the counter is expired, the following hold. 
i) If the requesting masters do not exist, the No- 
Port signal is updated based on the HSEL signal of 
the currently selected master. If the HSEL signal is 
“1,” the same master remains selected, and the 
NoPort signal is deasserted. Otherwise, the NoPort 
signal is asserted. 
ii) Otherwise, a master for the next transfer is se-
lected based on the priority levels of the requesting 
masters. Also, the counter is updated. 
b) If the counter is not expired, and the HSEL sig-
nal of the current master is “1,” the same master 
remains selected, and the counter is decreased. 
c) If the currently selected master completes a 
transaction before the counter is expired, the fol-
lowing hold. 
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i) If the requesting masters do not exist, the No- 
Port signal is asserted. 
ii) Otherwise, a master for the next transfer is cho-
sen based on the priority levels of the requesting 
masters, and the counter is updated. 
 
The AD arbitration scheme is achieved through 
iteration of the aforementioned steps. Combining 
the priority level and the desired transfer length of 
the masters allows our arbiter to handle the trans-
fer-based fixed-priority, round-robin, and dynam-
ic-priority arbitration schemes (abbreviated as the 
FT, RT, and DT arbitration schemes, respectively), 
as well as the transaction-based fixed-priority, 
round-robin, and dynamic-priority arbitration 
schemes (abbreviated as the FR, RR, and DR arbi-
tration schemes, respectively). Moreover, our arbi-
ter can also deal with the desired-transfer-length-
based fixed-priority, round-robin, and dynamic-
priority arbitration schemes (abbreviated as the FL, 
RL, and DL arbitration schemes, respectively). The 
transfer- or transaction-based arbiter switches the 
data transfer based upon a single transfer (burst 
transaction), and the desired-transfer-length-based 
arbiter multiplexes the data transfer based on the 
transfer length assigned by the masters. 
 
Fig. 7 shows the configurations for the fixed-
priority arbitration schemes. 
In this figure, the smaller the priority level num-
ber, the higher the priority level. In the fixed-
priority arbitration schemes, each master has a 
static priority. In transfer-based arbitration, how-
ever, the transfer length is allocated as 1, indicating 
a single transfer; in transaction-based arbitration, 
the transfer length is equal to the HBURST signal, 
which refers to the transaction type (transfer length 
= 8). In addition, the transfer length for the de-
sired-transfer-length-based arbitration is allotted 
by the demand of each master (for example, let M0 
= 2, M1 = 4, M2 = 8, and M3 = 6). The arbitration 
results of Fig. 7 are as follows (“#” indicates the 
transfer number). 
1) FT arbitration scheme: M2(#0), M2(#1), M2(#2), 
M1(#0), M1(#1), M1(#2), M1(#3), M1(#4), M0(#0), 
M0(#1), M0(#2), M0(#3), M0(#4), M0(#5), M0(#6), 
M0(#7), M1(#5), M1(#6), M1(#7), M2(#3), M2(#4), 
M2(#5), M2(#6), M2(#7), M3(#0), M3(#1), M3(#2), 
M3(#3), M3(#4), M3(#5), M3(#6), M3(#7). 
 
2) FR arbitration scheme: M2(#0), M2(#1), M2(#2), 
M2(#3), M2(#4), M2(#5), M2(#6),  

 
Fig. 7. Configurations for the fixed-priority arbitra-
tion schemes. 
M2(#7), M0(#0), M0(#1), M0(#2), M0(#3), M0(#4), 
M0(#5), M0(#6), M0(#7), M1(#0), M1(#1), M1(#2), 
M1(#3), M1(#4), M1(#5), 
M1(#6), M1(#7), M3(#0), M3(#1), M3(#2), M3(#3), 
M3(#4), M3(#5), M3(#6), M3(#7). 
 
3) FL arbitration scheme: M2(#0), M2(#1), M2(#2), 
M2(#3), M2(#4), M2(#5), M2(#6), M2(#7), M0(#0), 
M0(#1), M0(#2), M0(#3), M0(#4), M0(#5), M0(#6), 
M0(#7), M1(#0), M1(#1), M1(#2), M1(#3), M1(#4), 
M1(#5), 
M1(#6), M1(#7), M3(#0), M3(#1), M3(#2), M3(#3), 
M3(#4), M3(#5), M3(#6), M3(#7). 
 
In this case, the result of transaction-based arbitra-
tion is equal to that of desired- ransfer-length-
based arbitration because the 
priority levels of all the masters are fixed. Fig. 8 
shows the combinations for the round-robin arbi-
tration schemes. In these schemes, the masters 
have equal priorities, with the transfer length being 
assigned as 1 in transfer-based arbitration and 8 in 
transaction-based arbitration. Also, in desired-
transferlength- based arbitration, the transfer 
length is assigned by the demand of each master 
(for example, let M0=2, M1=8, M2=6 , and M3=4 ). 
The arbitration results of Fig. 8 are as follows. 
 
1) RT arbitration scheme: M0(#0), M1(#0), M2(#0), 
M3(#0), M0(#1), M1(#1), M2(#1), M3(#1), M0(#2), 
M1(#2), M2(#2), M3(#2), M0(#3), M1(#3), M2(#3), 
M3(#3), M0(#4), M1(#4), M2(#4), M3(#4), M0(#5), 
M1(#5), 
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Fig. 8. Configurations for the round-robin arbitra-
tion schemes. 
M2(#5), M3(#5), M0(#6), M1(#6), M2(#6), M3(#6), 
M0(#7), M1(#7), M2(#7), M3(#7). 
 
2) RR arbitration scheme: M0(#0), M0(#1), M0(#2), 
M0(#3), M0(#4), M0(#5), M0(#6), M0(#7), M1(#0), 
M1(#1), M1(#2), M1(#3), M1(#4), M1(#5), M1(#6), 
M1(#7), M2(#0), M2(#1), M2(#2), M2(#3), M2(#4), 
M2(#5), 
M2(#6), M2(#7), M3(#0), M3(#1), M3(#2), M3(#3), 
M3(#4), M3(#5), M3(#6), M3(#7). 
 
3) RL arbitration scheme: M0(#0), M0(#1), M1(#0), 
M1(#1), M1(#2), M1(#3), M1(#4), M1(#5), M1(#6), 
M1(#7), M2(#0), M2(#1), M2(#2), M2(#3), M2(#4), 
M2(#5), M3(#0), M3(#1), M3(#2), M3(#3), M0(#2), 
M0(#3), 
M2(#6), M2(#7), M3(#4), M3(#5), M3(#6), M3(#7), 
M0(#4), M0(#5), M0(#6), M0(#7). 
 
Fig. 9 shows the configurations for the dynamic-
priority arbitration schemes. In the dynamic-
priority arbitration schemes, the priority of the 
masters can be changed by the AD demand of each 
master. Furthermore, the transfer length is as-
signed as 1 in transfer-based arbitration and 4 in 
transaction-based arbitration. Also, the transfer 
length for desired-transfer-length- based arbitra-
tion is assigned, as shown in Fig. 9. The arbitration 
results of Fig. 9 are as follows. 
1) DT arbitration scheme: M2(#0), M3(#0), M3(#1), 
M3(#2), M3(#3), M1(#0), M1(#1), M1(#2), M1(#3), 
M0(#0), M0(#1), M0(#2), M0(#3), M2(#1), M2(#2), 
M2(#3) M3(#0), 

 
Fig. 9. Configurations for the dynamic-priority 
arbitration schemes. 
M3(#1), M0(#0), M0(#1), M0(#2), M2(#0), M2(#1), 
M2(#2), M2(#3), M0(#3), M1(#0), 
M1(#1), M1(#2), M1(#3), M3(#2), M3(#3). 
 
2) DR arbitration scheme: M2(#0), M2(#1), M2(#2), 
M2(#3), M3(#0), M3(#1), M3(#2), M3(#3), M1(#0), 
M1(#1), M1(#2), M1(#3), M0(#0), M0(#1), M0(#2), 
M0(#3) M3(#0), M3(#1), M3(#2), M3(#3), M0(#0), 
M0(#1), M0(#2), M0(#3), M2(#0), M2(#1), M2(#2), 
M2(#3), M1(#0), M1(#1), M1(#2), M1(#3). 
 
3) DL arbitration scheme: M2(#0), M2(#1), M2(#2), 
M3(#0), M3(#1), M3(#2), M3(#3), M1(#0), M1(#1), 
M1(#2), M1(#3), M0(#0), M0(#1), M0(#2), M0(#3), 
M2(#3) M3(#0), M3(#1), M0(#0), M0(#1), M0(#2), 
M0(#3), M2(#0), M2(#1), M2(#2), M2(#3), M1(#0), 
M1(#1), M1(#2), M1(#3), M3(#2), M3(#3). 
 

 

4 IMPLEMENTATION RESULTS AND 

PERFORMANCE ANALYSIS 

 
A. Implementation Results 
We implemented different slave-side arbitration 
schemes for the ML-AHB busmatrix. Each arbitra-
tion-scheme-based busmatrix was implemented 
with synthesizable RTL Verilog targeting XILINX 
FPGA (XC3S200). The XILINX design tool (ISE 7.1i) 
was used to measure the total area. The imple-
mented 
arbitration schemes are as follows: 
• FT, FR, RT, RR, DT, DR, and AD arbitration 
schemes. 
The ML-AHB busmatrix of ARM provides only 
two arbitration schemes: FT and RT arbitration 
schemes. Thus, we compared the FT- and RT-based 
busmatrixes of ARM with our corresponding bus-
matrixes in the area overhead to show the credibil-
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ity of our implementation. The total areas of our 
FT- and RT-based busmatrixes decreases by 21% 
and 13% on average, respectively, compared with 
the FT- and RT-based busmatrixes of ARM. One 
reason is that we adapted the bit masking mecha-
nism to our busmatrixes to reduce the area of the 
arbiter, while ARM used multiple priority encod-
ers, a multiplexer, and a demultiplexer to imple-
ment the arbiters of the busmatrixes. The total area 
of the AD-based busmatrix is 9%–25% larger than 
those of the other busmatrixes. This may be due to 
our AD-based busmatrix also requiring the com-
parator to compare the priority of the masters and 
the counters to calculate the transfer length. Alt-
hough our AD-based busmatrix occupies more 
area than the other busmatrixes, our arbiter is able 
to deal with varied arbitration schemes such as the 
FT, FR, RT, RR, DT, and DR arbitration schemes. 
B. Performance Analysis 
We utilized a ModelSim II simulator to measure 
the performance of the ML-AHB busmatrixes with 
the different arbitration schemes and demonstrate 
the efficiency of our flexible AD arbitration 
scheme. 
 
1) Simulation Environments: Fig. 10 shows our 
simulation environment. 
In our simulation environment, the clock frequen-
cies of all components are 100 MHz (10 ns). The 
implemented ML-AHB busmatrix has a 32-b ad-
dress bus, a 32-b write data bus, a 32-b read data 
bus, a 15-b 

 
Fig. 10. Simulation environment for performance 
analysis. 
control bus, and a 3-b response bus. Meanwhile, 
the simulation environment consists of both an 
implemented and a virtual part. The former corre-
sponds to the 
ML-AHB busmatrixes with different arbitration 
schemes and consists of four masters and two 
slaves. Specifically, we only considered two target 
slaves, which is when conflict frequently happens. 
The masters then access these in order to focus on 

the performance analysis based on the arbitration 
schemes of each busmatrix. The virtual part, how-
ever, is composed of AHB 
masters and AHB slaves. The AHB master gener-
ates the transactions, with the transactions of the 
masters having the same length as an 8-beat in-
crementing burst type. The AHB slave responds to 
the transfers of the masters. Both the AHB masters 
and slaves are fully compatible with the AMBA 
AHB protocol. For a more realistic model of a SoC 
design, we modeled the AHB masters after the 
features of the processor and DMA with verilog at 
the behavioral level. For the AHB slaves, we used 
the real SRAM, SDRAM, and SDRAM controller 
RTL models used in many applications. We also 
constructed the protocol checker and performance 
monitor modules with the verilog and foreign lan-
guage interface (FLI C module) to ensure the relia-
bility of our performance simulations. Prior to the 
simulation, the workloads should be determined as 
they affect the simulation results. However, deter-
mining the appropriate workloads of real applica-
tions is difficult because these can only be obtained 
when all applications with real input data are spe-
cifically modeled. Instead, the workloads for per-
formance simulation are obtained through synthet-
ic workload generation with the following parame-
ters. 
1) The distribution of transactions. This indicates 
what proportion of the total transactions that each 
master is responsible 
for. 
2) The ratio of the nonbus transaction time to the 
total transaction time per AHB master, where the 
total transaction time consists of a nonbus transac-
tion (internal transaction of the master) time and a 
bus transaction (external transaction of the master 
through the busmatrix) time. 
3) The latency time of the accessed slave by each 
master. These parameters determine the delay of 
components in the virtual part. Through synthetic 
workload generation, various possible situations 
are investigated, where the ML-AHB busmatrixes 
with each arbitration scheme can be utilized well. 
In this regard, we found three useful categories of 
experiments to identify the effects of the following 
factors: 
1) job length of the masters; 
2) latency time of the slaves; 
3) both the job length of the masters and the laten-
cy time of 
the slaves. 
 
The dynamic-priority-based arbitration scheme has 



International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012                                                             8 

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

the advantage for throughput when there are few 
masters with long job lengths in a system; in other 
cases, the round-robin-based arbitration scheme 
can get higher throughput than other arbitration 
schemes. In addition, the arbitration scheme with 
transaction-based multiplexing performs better 
than the same arbitration scheme with single-
transfer-based switching in applications with fre-
quent access to long-latency slaves such as 
SDRAM. The slave for the first category is the 
SRAM-type AHB slave (AHB slave0 in Fig. 10) 
without latency for access, while the slave for the 
second category is the SDRAM-type AHB slave 
with a long latency time for access. The slave for 
the third category can be an AHB slave0 or an 
AHB slave1. In particular, the target addresses are 
generated based on the uniform distribution ran-
dom number function between AHB slave0 and 
AHB slave1. Therefore, each master communicates 
with the slaves with the same probability in the 
third category. We performed a number of perfor-
mance simulations at various job lengths and ob-
served no difference in the results of the 
performance simulation at specific job lengths. The 
specific job length was 4800, and we decided the 
job length for performance analysis to be the same 
at 4800. In addition, this job length explicitly exhib-
its the features of each arbitration scheme very 
well. 
2) Simulation Results: Fig. 11 shows the simulation 
results of the Adaptive-Dynamic arbitration 
scheme. In this paper, throughput is defined as 
 
Throughput = NTransactions * NTransfers * Nbit / 
T 
 
where NTransactions is the total number of trans-
actions, NTransfers indicates the number of trans-
fers per transaction, denotes the data bit width, 
and T means the completion time of the data 
transmission. Note that NTransactions, NTransfers 
, Nbit and are all fixed in three categories. Howev-
er, the simulation results are different from each 
other since the distribution of transactions (total 
transaction/nonbus transaction) is different from 
each other.  
 

 

 

 

 

5 SIMULATION RESULTS 

 

 
Fig. 11 : Output of AD arbiter 
 

6 CONCLUSION 

 
In this paper, we proposed a flexible arbiter based 
on the AD arbitration scheme for the ML-AHB 
busmatrix. Our arbiter supports three priority poli-
cies-fixed priority, round-robin, and dynamic pri-
ority-and three approaches to data multiplexing- 
transfer, transaction, and desired transfer length; in 
other words, there are nine possible arbitration 
schemes. In addition, the proposed AD arbiter se-
lects one of the nine possible arbitration schemes 
based on the priority-level notifications and the 
desired transfer length from the masters to allow 
the arbitration to lead to the maximum perfor-
mance. Experimental results show that, although 
the area of the proposed AD arbitration scheme is 
9%–25% larger than those of other arbitration 
schemes, our arbiter improves the throughput by 
14%–62% compared with other schemes. We there-
fore expect that it would be better to apply our AD 
arbitration scheme to an application- specific sys-
tem because it is easy to tune the arbitration 
scheme according to the features of the target sys-
tem. For future work, we feel that the configura-
tions of the AD arbitration scheme with the maxi-
mum throughput need to be found automatically 
during runtime. 
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