
International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Implementation of an Adaptive-Dynamic
 Arbitration

Scheme for the Multilayer AHB Busmatrix
N.Khadar basha

Abstract— My paper consists of master side arbitration and slave side arbitration in a system. Based on AMBA AHB protocol, the adaptive dynamic

arbitration scheme is being implemented on the slave side arbitration. The multilayered advanced high-performance bus (ML-AHB) bus matrix is an
interconnection between multiple masters and multiple slaves in a system. The master and the slave communicate in terms of request and grant signals.
The master merely starts a burst transaction and waits for the slave response to proceed to the next transfer. However, the ML-AHB busmatrix of ARM
offers only transfer-based fixed-priority and round-robin arbitration schemes. In fixed priority arbitration scheme, each master is assigned a fixed priority
value. It is simple in implementation and has small area cost. But in heavy communication traffic, master that has low priority value cannot get a grant
signal. In round robin arbitration scheme, each master is allotted a fixed time slot. If the new master sends a request in between, then that master has to
wait until all masters completetheir tasks. In Adaptive Dynamic arbitration scheme, the design and implementation of a flexible arbiter for the ML-AHB
busmatrix is to support three priority policies—fixed priority, round robin, and dynamic priority and three data multiplexing modes—transfer, transaction,
and desired transfer length. The slave side arbiter dynamically selects one of the three possible arbitration schemes based upon the priority-level notifi-
cations and the desired transfer length from the masters so that arbitration leads to the maximum performance. The area overhead of the adaptive dy-
namic arbitration scheme will be 9%--25% larger than those of the other arbitration schemes and improves the throughput by 14%–62% compared to
other schemes. There are totally nine arbitration schemes. Among the nine arbitration schemes, the adaptive dynamic arbitration scheme is the efficient
one and the master which has accessed the bandwidth less number of times will be given highest priority and will get the grant signals.

Index Terms— Multilayer AHB (ML-AHB) busmatrix, on-chip bus, self-motivated (SM) arbitration scheme, slave-side arbitration, system-on-a-chip

(SoC).

—————————— ——————————

1 INTRODUCTION

he on-chip bus plays a key role in the system-on-a-

chip (SoC) design by enabling the efficient inte-
gration of heterogeneous system components

such as CPUs, DSPs, application-specific cores,
memories, and custom logic. Recently, as the level
of design complexity has become higher, SoC de-
signs require a system bus with high bandwidth to
perform multiple operations in parallel. To solve
the bandwidth problems, there have been several
types of high-performance on-chip buses pro-
posed, such as the multilayer AHB (ML-AHB)
busmatrix from ARM, the PLB crossbar switch
from IBM, and CONMAX from Silicore. Among
them, the ML-AHB busmatrix has been widely
used in many SoC designs. This is because of the
simplicity of the AMBA bus of ARM, which at-
tracts many IP designers, and the good architecture
of the AMBA bus for applying embedded systems
with low power. The ML-AHB busmatrix is an
interconnection scheme based on the AMBA AHB
protocol, which enables parallel access paths be-
tween multiple masters and slaves in a system.
This is achieved by using a more complex inter-
connection matrix and gives the benefit of both
increased overall bus bandwidth and a more flexi-
ble system structure. In particular, the ML-AHB
busmatrix uses slave-side arbitration. Slave-side
arbitration is different from master-side arbitration
in terms of request and grant signals since, in the
former, the master merely starts a burst transaction
and waits for the slave response to proceed to the

next transfer. Therefore, the unit of arbitration can
be a transaction or a transfer. The transaction-
based arbiter multiplexes the data transfer based
on the burst transaction, and the transfer-based
arbiter switches the data transfer based on a single
transfer. However, the ML-AHB busmatrix of
ARM presents only transfer- based arbitration
schemes, i.e., transfer based fixed-priority and
round-robin arbitration schemes. This limitation on
the arbitration scheme may lead to degradation of
the system performance because the arbitration
scheme is usually dependent on the application
requirements; recent applications are likewise be-
coming more complex and diverse. By implement-
ing an efficient arbitration scheme, the system per-
formance can be tuned to better suit applications.
For a high-performance on-chip bus, several stud-
ies related to the arbitration scheme have been
proposed, such as table-lookup-based crossbar
arbitration, two-level time-division multiplexing
(TDM) scheduling, token-ring mechanism, dynam-
ic bus distribution algorithm, and LOTTERYBUS.
However, these approaches employ master-side
arbitration. Therefore, they can only control priori-
ty policy and also present some limitations when
handling the transfer-based arbitration scheme
since master-side arbitration uses a centralized
arbiter. In contrast, it is possible to deal with the
transfer-based arbitration scheme as well as the
transaction- based arbitration scheme in slave-side
arbitration. In this paper, we propose a flexible

T

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

arbiter based on the adaptive-dynamic (AD) arbi-
tration scheme for the ML-AHB busmatrix.

Fig. 1. Overall structure of the ML-AHB busmatrix
of ARM .

Our AD arbitration scheme has the follow-
ing advantages:

1) It can adjust the processed data unit;
2) it changes the priority policies during

runtime; and
3) it is easy to tune the arbitration scheme

according to the characteristics of the target appli-
cation.

Hence, our arbiter is able to not only deal
with the transfer-based fixed-priority, round-robin,
and dynamic-priority arbitration schemes but also
manage the transaction-based fixed-priority,
round-robin, and dynamic-priority arbitration
schemes. Furthermore, our arbiter provides the
desired-transfer-length-based fixed-priority,
round-robin, and dynamic-priority arbitration
schemes. In addition, the proposed AD arbiter se-
lects one of the nine possible arbitration schemes
based on the priority-level notifications and the
desired transfer length from the masters to ensure
that the arbitration leads to the maximum perfor-
mance. In Section II, we briefly explain the arbitra-
tion schemes for the ML-AHB busmatrix of ARM,
while Section III describes an implementation
method for our flexible arbiter based upon the AD
arbitration scheme for the ML-AHB busmatrix. We
then present implementation results and perfor-
mance analysis in Section IV, simulation results in
Section V and concluding remarks in Section VI.

2 ARBITRATION SCHEMES FOR THE

ML-AHB BUSMATRIX OF ARM

The ML-AHB busmatrix of ARM consists of the
input stage, decoder, and output stage, including
an arbiter. Fig. 1 shows the overall structure of the
ML-AHB busmatrix of ARM. The input stage is
responsible for holding the address and control
information when transfer to a slave is not able to
commence immediately. The decoder determines
which slave that a transfer is destined for. The out-
put stage is used to select which of the various
master input ports is routed to the slave. Each out-
put stage has an arbiter. The arbiter determines
which input stage has to perform
a transfer to the slave and decides which the high-
est priority is currently. The ML-AHB busmatrix
employs slave-side arbitration, in which the arbi-
ters are located in front of each slave port, as
shown in Fig. 1. The master simply starts a transac-
tion and waits for the slave response to proceed to
the next transfer. Therefore, the unit of arbitration
can be a transaction or a transfer. However, the
ML-AHB busmatrix of ARM furnishes only trans-
fer-based arbitration schemes, specifically transfer-
based fixed-priority and round-robin arbitration
schemes. The transfer-based fixed-priority (round-
robin) arbiter multiplexes the data transfer based
on a single transfer in a fixed-priority or round-
robin fashion.

3 AD ARBITRATION SCHEME FOR THE

ML-AHB BUSMATRIX

An assumption is made that the masters can
change their priority level and can issue the de-
sired transfer length to the arbiters in order to im-
plement a AD arbitration scheme. This assumption
should be valid because the system developer gen-
erally recognizes the features of the target applica-
tions. For example, some masters in embedded
systems are required to complete their job for giv-
en timing constraints, resulting in the satisfaction
of system-level timing constraints. The computa-
tion time of each master is predictable, but it is not
easy to foresee the data transfer time since the on-
chip bus is usually shared by several masters. Pre-
vious works solved this issue by minimizing the
latencies of several latency-critical masters, but a
side effect of these methods is that they can in-
crease the latencies of other masters; hence, they

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

may violate the given timing constraints. Unlike
existing works, our scheme can keep the latency
close to its given constraint by adjusting the priori-
ty level and transfer length of the masters. Fig. 2
shows an example.

Fig. 2. Arbitration scheme examples in an embed-
ded system. (a) Arbitration scheme with no con-
sideration of the latency constraint. (b) Arbitration
scheme minimizing latency. (c) AD arbitration
scheme.

In this example, the service latencies (latency-limit
times) of M1, M2, and M3 are 4, 8, and 2 cycles
(T14, T8, and T10), respectively. The requests for
three masters are all initiated at T0, and M3 is the
most latency-sensitive master. Fig. 2(a) shows an
arbitration scheme that does not use latency con-
straints for arbitration. Therefore, M2 and M3 vio-
late the latency constraint as the masters are select-
ed in ascending order. Only M1 meets the con-
straint. Fig. 2(b) shows the scheduling of a typical
latency- minimizing arbiter. It minimizes the laten-
cy of the most latency-sensitive module, namely,
M3, causing M2 to violate its constraint. Although
neither of these two arbitration schemes can meet
the latency constraints for all three masters, in the
AD arbitration shown in Fig. 2(c), all masters use
the bus with no violations by configuring the prior-
ity levels (transfer lengths) of M1, M2, and M3 as
the lowest, highest, and intermediate priorities (4,
8, and 2), respectively.
We use part of a 32-b address bus of the masters to
inform the arbiters of the priority level and the
desired transfer length of the masters. Fig. 3 shows
the decoding information for our address bus.

Fig. 3. Decoding information of the 32-b address
bus.

In Fig. 3, S_Number indicates the target slave
number, P_Level means the priority level of a mas-
ter, T_Length denotes the desired transfer length of
a master, and Offset_Add specifies the internal
address of the target slave. Each of S_Number and
P_Level consists of 3 b because the maximum
number of master–slave sets is 8 8. Also, T_Length
is composed of 4 b because the maximum number
of burst lengths is 16. Although we used 7 b for
P_Level and T_Length in the 32-b address bus to
notify the arbiters of the priority level and the de-
sired transfer length of a master, we consider it
adequate to express the internal address of a slave
because the range of Offset_Add is from 0 to 222-1.
Through the aforementioned assumption, the pri-
ority level and transfer length can then be changed
by the AD demand of each master.

Fig. 4 shows the internal structure of our arbiter
based upon the AD arbitration scheme.

Fig. 4. Internal structure of our arbiter.

In Fig. 4, the NoPort signal means that none of the
masters must be selected and that the address and
control signals to the shared slave must be driven
to an inactive state, while Master No. indicates the
currently selected master number generated by the
controller for the AD arbitration scheme. In gen-
eral, our arbiter consists of an RR block, a P block,
two multiplexers, a counter, a controller, and two
flip-flops. MUX_1 and MUX_2 are used to select
the arbitration scheme and the desired transfer
length of a master, respectively. A counter calcu-
lates the transfer length, with two flip-flops being
inserted to avoid the attempts by the critical path
to arbitrate. An RR block (P block) performs the
round-robin- or priority-based arbitration scheme.
Fig. 5 shows the internal process of an RR block.

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Fig. 5. Internal process of the RR block.
Initially, we create the up- and down-mask vectors
(Up_Mask and Dn_Mask) based on the number of
currently selected masters, as shown in Fig. 5. We
then generate the up- or down-masked vector cre-
ated through bitwise AND-ing operation between
the mask vector and the requested master vector.
After generating the up- and down-masked vec-
tors, we examine each masked vector as to whether
they are zero or not. If the up-masked vector is
zero, the down-masked vector is inserted to the
input parameter of the round-robin function; if it is
not zero, the up-masked vector is the one inserted.
A master for the next transfer is chosen by the
round-robin function, and the current master is
updated after 1 clock cycle. The RR block is then
performed by repeating the arbitration procedure
shown in Fig. 5.

A master for the next transfer is selected, with the
priority level of the least significant bit in
Masked_Vector being the highest. If we modify the
range of Masked_Vector to “0 to
Masked_Vector’left,” then the priority level of the
most significant bit in Masked_Vector becomes the

highest.

Fig. 6. Internal procedure of the P block.

Fig. 6 shows the internal procedure of the P block.
First of all, we create the highest priority vector (V)
through the round-robin function. After generating
the highest priority vector (V), the priority-level
vectors and the highest priority vector (V) are in-
serted to the input parameters of the priority func-
tion. The master with the highest priority is chosen
by the priority function, while the current master is
updated after 1 clock cycle. The master with the
highest priority is selected in Fig 6.

A controller compares the priority levels of the
requesting masters. If the masters have equal prior-
ities, the controller selects the round-robin arbitra-
tion scheme (RR block); in other cases, it chooses
the priority arbitration scheme (P block). The con-
troller also makes the final decision on the master
for the next transfer based on the transfer length of
the selected master. The control process follows the
following three steps.

1) If HMASTLOCK is asserted, the same master
remains selected.

2) If HMASTLOCK is not asserted and the current-
ly selected master does not exist, the following
hold.

a) If no master is requesting access, the
NoPort signal is asserted.
b) Otherwise, a new master for the next transfer is
initially selected. If the masters have equal priori-
ties, the round-robin arbitration scheme is selected;
otherwise, the priority arbitration scheme is cho-
sen. In addition, the counter is updated based on
the transfer length of the selected master.
3) If none of the previous statements applies, the
following hold.
a) If the counter is expired, the following hold.
i) If the requesting masters do not exist, the No-
Port signal is updated based on the HSEL signal of
the currently selected master. If the HSEL signal is
“1,” the same master remains selected, and the
NoPort signal is deasserted. Otherwise, the NoPort
signal is asserted.
ii) Otherwise, a master for the next transfer is se-
lected based on the priority levels of the requesting
masters. Also, the counter is updated.
b) If the counter is not expired, and the HSEL sig-
nal of the current master is “1,” the same master
remains selected, and the counter is decreased.
c) If the currently selected master completes a
transaction before the counter is expired, the fol-
lowing hold.

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

i) If the requesting masters do not exist, the No-
Port signal is asserted.
ii) Otherwise, a master for the next transfer is cho-
sen based on the priority levels of the requesting
masters, and the counter is updated.

The AD arbitration scheme is achieved through
iteration of the aforementioned steps. Combining
the priority level and the desired transfer length of
the masters allows our arbiter to handle the trans-
fer-based fixed-priority, round-robin, and dynam-
ic-priority arbitration schemes (abbreviated as the
FT, RT, and DT arbitration schemes, respectively),
as well as the transaction-based fixed-priority,
round-robin, and dynamic-priority arbitration
schemes (abbreviated as the FR, RR, and DR arbi-
tration schemes, respectively). Moreover, our arbi-
ter can also deal with the desired-transfer-length-
based fixed-priority, round-robin, and dynamic-
priority arbitration schemes (abbreviated as the FL,
RL, and DL arbitration schemes, respectively). The
transfer- or transaction-based arbiter switches the
data transfer based upon a single transfer (burst
transaction), and the desired-transfer-length-based
arbiter multiplexes the data transfer based on the
transfer length assigned by the masters.

Fig. 7 shows the configurations for the fixed-
priority arbitration schemes.
In this figure, the smaller the priority level num-
ber, the higher the priority level. In the fixed-
priority arbitration schemes, each master has a
static priority. In transfer-based arbitration, how-
ever, the transfer length is allocated as 1, indicating
a single transfer; in transaction-based arbitration,
the transfer length is equal to the HBURST signal,
which refers to the transaction type (transfer length
= 8). In addition, the transfer length for the de-
sired-transfer-length-based arbitration is allotted
by the demand of each master (for example, let M0
= 2, M1 = 4, M2 = 8, and M3 = 6). The arbitration
results of Fig. 7 are as follows (“#” indicates the
transfer number).
1) FT arbitration scheme: M2(#0), M2(#1), M2(#2),
M1(#0), M1(#1), M1(#2), M1(#3), M1(#4), M0(#0),
M0(#1), M0(#2), M0(#3), M0(#4), M0(#5), M0(#6),
M0(#7), M1(#5), M1(#6), M1(#7), M2(#3), M2(#4),
M2(#5), M2(#6), M2(#7), M3(#0), M3(#1), M3(#2),
M3(#3), M3(#4), M3(#5), M3(#6), M3(#7).

2) FR arbitration scheme: M2(#0), M2(#1), M2(#2),
M2(#3), M2(#4), M2(#5), M2(#6),

Fig. 7. Configurations for the fixed-priority arbitra-
tion schemes.
M2(#7), M0(#0), M0(#1), M0(#2), M0(#3), M0(#4),
M0(#5), M0(#6), M0(#7), M1(#0), M1(#1), M1(#2),
M1(#3), M1(#4), M1(#5),
M1(#6), M1(#7), M3(#0), M3(#1), M3(#2), M3(#3),
M3(#4), M3(#5), M3(#6), M3(#7).

3) FL arbitration scheme: M2(#0), M2(#1), M2(#2),
M2(#3), M2(#4), M2(#5), M2(#6), M2(#7), M0(#0),
M0(#1), M0(#2), M0(#3), M0(#4), M0(#5), M0(#6),
M0(#7), M1(#0), M1(#1), M1(#2), M1(#3), M1(#4),
M1(#5),
M1(#6), M1(#7), M3(#0), M3(#1), M3(#2), M3(#3),
M3(#4), M3(#5), M3(#6), M3(#7).

In this case, the result of transaction-based arbitra-
tion is equal to that of desired- ransfer-length-
based arbitration because the
priority levels of all the masters are fixed. Fig. 8
shows the combinations for the round-robin arbi-
tration schemes. In these schemes, the masters
have equal priorities, with the transfer length being
assigned as 1 in transfer-based arbitration and 8 in
transaction-based arbitration. Also, in desired-
transferlength- based arbitration, the transfer
length is assigned by the demand of each master
(for example, let M0=2, M1=8, M2=6 , and M3=4).
The arbitration results of Fig. 8 are as follows.

1) RT arbitration scheme: M0(#0), M1(#0), M2(#0),
M3(#0), M0(#1), M1(#1), M2(#1), M3(#1), M0(#2),
M1(#2), M2(#2), M3(#2), M0(#3), M1(#3), M2(#3),
M3(#3), M0(#4), M1(#4), M2(#4), M3(#4), M0(#5),
M1(#5),

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Fig. 8. Configurations for the round-robin arbitra-
tion schemes.
M2(#5), M3(#5), M0(#6), M1(#6), M2(#6), M3(#6),
M0(#7), M1(#7), M2(#7), M3(#7).

2) RR arbitration scheme: M0(#0), M0(#1), M0(#2),
M0(#3), M0(#4), M0(#5), M0(#6), M0(#7), M1(#0),
M1(#1), M1(#2), M1(#3), M1(#4), M1(#5), M1(#6),
M1(#7), M2(#0), M2(#1), M2(#2), M2(#3), M2(#4),
M2(#5),
M2(#6), M2(#7), M3(#0), M3(#1), M3(#2), M3(#3),
M3(#4), M3(#5), M3(#6), M3(#7).

3) RL arbitration scheme: M0(#0), M0(#1), M1(#0),
M1(#1), M1(#2), M1(#3), M1(#4), M1(#5), M1(#6),
M1(#7), M2(#0), M2(#1), M2(#2), M2(#3), M2(#4),
M2(#5), M3(#0), M3(#1), M3(#2), M3(#3), M0(#2),
M0(#3),
M2(#6), M2(#7), M3(#4), M3(#5), M3(#6), M3(#7),
M0(#4), M0(#5), M0(#6), M0(#7).

Fig. 9 shows the configurations for the dynamic-
priority arbitration schemes. In the dynamic-
priority arbitration schemes, the priority of the
masters can be changed by the AD demand of each
master. Furthermore, the transfer length is as-
signed as 1 in transfer-based arbitration and 4 in
transaction-based arbitration. Also, the transfer
length for desired-transfer-length- based arbitra-
tion is assigned, as shown in Fig. 9. The arbitration
results of Fig. 9 are as follows.
1) DT arbitration scheme: M2(#0), M3(#0), M3(#1),
M3(#2), M3(#3), M1(#0), M1(#1), M1(#2), M1(#3),
M0(#0), M0(#1), M0(#2), M0(#3), M2(#1), M2(#2),
M2(#3) M3(#0),

Fig. 9. Configurations for the dynamic-priority
arbitration schemes.
M3(#1), M0(#0), M0(#1), M0(#2), M2(#0), M2(#1),
M2(#2), M2(#3), M0(#3), M1(#0),
M1(#1), M1(#2), M1(#3), M3(#2), M3(#3).

2) DR arbitration scheme: M2(#0), M2(#1), M2(#2),
M2(#3), M3(#0), M3(#1), M3(#2), M3(#3), M1(#0),
M1(#1), M1(#2), M1(#3), M0(#0), M0(#1), M0(#2),
M0(#3) M3(#0), M3(#1), M3(#2), M3(#3), M0(#0),
M0(#1), M0(#2), M0(#3), M2(#0), M2(#1), M2(#2),
M2(#3), M1(#0), M1(#1), M1(#2), M1(#3).

3) DL arbitration scheme: M2(#0), M2(#1), M2(#2),
M3(#0), M3(#1), M3(#2), M3(#3), M1(#0), M1(#1),
M1(#2), M1(#3), M0(#0), M0(#1), M0(#2), M0(#3),
M2(#3) M3(#0), M3(#1), M0(#0), M0(#1), M0(#2),
M0(#3), M2(#0), M2(#1), M2(#2), M2(#3), M1(#0),
M1(#1), M1(#2), M1(#3), M3(#2), M3(#3).

4 IMPLEMENTATION RESULTS AND

PERFORMANCE ANALYSIS

A. Implementation Results
We implemented different slave-side arbitration
schemes for the ML-AHB busmatrix. Each arbitra-
tion-scheme-based busmatrix was implemented
with synthesizable RTL Verilog targeting XILINX
FPGA (XC3S200). The XILINX design tool (ISE 7.1i)
was used to measure the total area. The imple-
mented
arbitration schemes are as follows:
• FT, FR, RT, RR, DT, DR, and AD arbitration
schemes.
The ML-AHB busmatrix of ARM provides only
two arbitration schemes: FT and RT arbitration
schemes. Thus, we compared the FT- and RT-based
busmatrixes of ARM with our corresponding bus-
matrixes in the area overhead to show the credibil-

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 7

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

ity of our implementation. The total areas of our
FT- and RT-based busmatrixes decreases by 21%
and 13% on average, respectively, compared with
the FT- and RT-based busmatrixes of ARM. One
reason is that we adapted the bit masking mecha-
nism to our busmatrixes to reduce the area of the
arbiter, while ARM used multiple priority encod-
ers, a multiplexer, and a demultiplexer to imple-
ment the arbiters of the busmatrixes. The total area
of the AD-based busmatrix is 9%–25% larger than
those of the other busmatrixes. This may be due to
our AD-based busmatrix also requiring the com-
parator to compare the priority of the masters and
the counters to calculate the transfer length. Alt-
hough our AD-based busmatrix occupies more
area than the other busmatrixes, our arbiter is able
to deal with varied arbitration schemes such as the
FT, FR, RT, RR, DT, and DR arbitration schemes.
B. Performance Analysis
We utilized a ModelSim II simulator to measure
the performance of the ML-AHB busmatrixes with
the different arbitration schemes and demonstrate
the efficiency of our flexible AD arbitration
scheme.

1) Simulation Environments: Fig. 10 shows our
simulation environment.
In our simulation environment, the clock frequen-
cies of all components are 100 MHz (10 ns). The
implemented ML-AHB busmatrix has a 32-b ad-
dress bus, a 32-b write data bus, a 32-b read data
bus, a 15-b

Fig. 10. Simulation environment for performance
analysis.
control bus, and a 3-b response bus. Meanwhile,
the simulation environment consists of both an
implemented and a virtual part. The former corre-
sponds to the
ML-AHB busmatrixes with different arbitration
schemes and consists of four masters and two
slaves. Specifically, we only considered two target
slaves, which is when conflict frequently happens.
The masters then access these in order to focus on

the performance analysis based on the arbitration
schemes of each busmatrix. The virtual part, how-
ever, is composed of AHB
masters and AHB slaves. The AHB master gener-
ates the transactions, with the transactions of the
masters having the same length as an 8-beat in-
crementing burst type. The AHB slave responds to
the transfers of the masters. Both the AHB masters
and slaves are fully compatible with the AMBA
AHB protocol. For a more realistic model of a SoC
design, we modeled the AHB masters after the
features of the processor and DMA with verilog at
the behavioral level. For the AHB slaves, we used
the real SRAM, SDRAM, and SDRAM controller
RTL models used in many applications. We also
constructed the protocol checker and performance
monitor modules with the verilog and foreign lan-
guage interface (FLI C module) to ensure the relia-
bility of our performance simulations. Prior to the
simulation, the workloads should be determined as
they affect the simulation results. However, deter-
mining the appropriate workloads of real applica-
tions is difficult because these can only be obtained
when all applications with real input data are spe-
cifically modeled. Instead, the workloads for per-
formance simulation are obtained through synthet-
ic workload generation with the following parame-
ters.
1) The distribution of transactions. This indicates
what proportion of the total transactions that each
master is responsible
for.
2) The ratio of the nonbus transaction time to the
total transaction time per AHB master, where the
total transaction time consists of a nonbus transac-
tion (internal transaction of the master) time and a
bus transaction (external transaction of the master
through the busmatrix) time.
3) The latency time of the accessed slave by each
master. These parameters determine the delay of
components in the virtual part. Through synthetic
workload generation, various possible situations
are investigated, where the ML-AHB busmatrixes
with each arbitration scheme can be utilized well.
In this regard, we found three useful categories of
experiments to identify the effects of the following
factors:
1) job length of the masters;
2) latency time of the slaves;
3) both the job length of the masters and the laten-
cy time of
the slaves.

The dynamic-priority-based arbitration scheme has

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 8

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

the advantage for throughput when there are few
masters with long job lengths in a system; in other
cases, the round-robin-based arbitration scheme
can get higher throughput than other arbitration
schemes. In addition, the arbitration scheme with
transaction-based multiplexing performs better
than the same arbitration scheme with single-
transfer-based switching in applications with fre-
quent access to long-latency slaves such as
SDRAM. The slave for the first category is the
SRAM-type AHB slave (AHB slave0 in Fig. 10)
without latency for access, while the slave for the
second category is the SDRAM-type AHB slave
with a long latency time for access. The slave for
the third category can be an AHB slave0 or an
AHB slave1. In particular, the target addresses are
generated based on the uniform distribution ran-
dom number function between AHB slave0 and
AHB slave1. Therefore, each master communicates
with the slaves with the same probability in the
third category. We performed a number of perfor-
mance simulations at various job lengths and ob-
served no difference in the results of the
performance simulation at specific job lengths. The
specific job length was 4800, and we decided the
job length for performance analysis to be the same
at 4800. In addition, this job length explicitly exhib-
its the features of each arbitration scheme very
well.
2) Simulation Results: Fig. 11 shows the simulation
results of the Adaptive-Dynamic arbitration
scheme. In this paper, throughput is defined as

Throughput = NTransactions * NTransfers * Nbit /
T

where NTransactions is the total number of trans-
actions, NTransfers indicates the number of trans-
fers per transaction, denotes the data bit width,
and T means the completion time of the data
transmission. Note that NTransactions, NTransfers
, Nbit and are all fixed in three categories. Howev-
er, the simulation results are different from each
other since the distribution of transactions (total
transaction/nonbus transaction) is different from
each other.

5 SIMULATION RESULTS

Fig. 11 : Output of AD arbiter

6 CONCLUSION

In this paper, we proposed a flexible arbiter based
on the AD arbitration scheme for the ML-AHB
busmatrix. Our arbiter supports three priority poli-
cies-fixed priority, round-robin, and dynamic pri-
ority-and three approaches to data multiplexing-
transfer, transaction, and desired transfer length; in
other words, there are nine possible arbitration
schemes. In addition, the proposed AD arbiter se-
lects one of the nine possible arbitration schemes
based on the priority-level notifications and the
desired transfer length from the masters to allow
the arbitration to lead to the maximum perfor-
mance. Experimental results show that, although
the area of the proposed AD arbitration scheme is
9%–25% larger than those of other arbitration
schemes, our arbiter improves the throughput by
14%–62% compared with other schemes. We there-
fore expect that it would be better to apply our AD
arbitration scheme to an application- specific sys-
tem because it is easy to tune the arbitration
scheme according to the features of the target sys-
tem. For future work, we feel that the configura-
tions of the AD arbitration scheme with the maxi-
mum throughput need to be found automatically
during runtime.

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 9

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

7 REFERENCES

[1] [1] M. Drinic, D. Kirovski, S. Megerian, and M. Pot-

konjak, “Latencyguided on-chip bus-network design,”

IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 25, no. 12, pp. 2663–2673, Dec. 2006.

[2] [2] S. Y. Hwang, K. S. Jhang, H. J. Park, Y. H. Bae, and

H. J. Cho, “An ameliorated design method of ML-AHB

busmatrix,” ETRI J., vol. 28, no. 3, pp. 397–400, Jun.

2006.

[3] [3] ARM, “AHB Example AMBA System,” 2001

[Online]. Available:

http://www.arm.com/products/solutions/AMBA_Sp

ec.html

[4] [4] IBM, New York, “32-bit Processor Local Bus Archi-

tecture Specification,” 2001.

[5] [5] R. Usselmann, “WISHBONE interconnect matrix IP

core,” Open-

[6] Cores, 2002. [Online]. Available:

http://www.opencores.org/?do=project=wb_conmax

[7] [6] N.-J. Kim and H.-J. Lee, “Design of AMBA wrappers

for multipleclock operations,” in Proc. Int. Conf.

ICCCAS, Jun. 2004, vol. 2, pp. 1438–1442.

[8] [7] D. Flynn, “AMBA: Enabling reusable on-chip de-

signs,” IEEE Micro, vol. 17, no. 4, pp. 20–27, Jul./Aug.

1997.

[9] [8] S. Y. Hwang, H.-J. Park, and K.-S. Jhang, “Perfor-

mance analysis of slave-side arbitration schemes for the

multi-layer AHB busmatrix,” J. KISS, Comput. Syst.

Theory, vol. 34, no. 5, pp. 257–266, Jun. 2007.

[10] [9] S. S. Kallakuri and A. Doboli, “Customization of

arbitration policies and buffer space distribution using

continuous-time Markov decision processes,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no.

2, pp. 240–245, Feb. 2007.

[11] [10] D. Seo and M. Thottethodi, “Table-lookup based

crossbar arbitration for minimal-routed, 2D mesh and

torus networks,” in Proc. Int. Conf. IPDPS, Mar. 2007,

pp. 1–10.

[12] [11] K. Lahiri, A. Raghunathan, and S. Dey, “Perfor-

mance analysis of systems with multi-channel commu-

nication architectures,” in Proc. Int. Conf. VLSI Design,

Jan. 2000, pp. 530–537.

[13] [12] J. Turner and N. Yamanaka, “Architectural choices

in large scale ATM

[14] switches,” IEICE Trans. Commun., vol. E-81B, no. 2, pp.

120–137, Feb. 1998.

[15] [13] C. H. Pyoun, C. H. Lin, H. S. Kim, and J. W. Chong,

“The efficient bus arbitration scheme in SoC environ-

ment,” in Proc. Int. Conf. SoC Real-Time Appl., Jul.

2003, pp. 311–315.

[16] [14] K. Lahiri, A. Raghunathan, and G. Lakshminaraya-

na, “The LOTTERYBUS on-chip communication archi-

tecture,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 14, no. 6, pp. 596–608, Jun. 2006.

[17] [15] J. H. Han, M. Y. Lee, B. Younghwan, and C. Hanjin,

“Application specific processor design for H.264 de-

coder with a configurable embedded processor,” ETRI

J., vol. 27, no. 5, pp. 491–496, Oct. 2005.

[18] [16] M. Jun, K. Bang, H.-J. Lee, N. Chang, and E.-Y.

Chung, “Slack-based bus arbitration scheme for soft re-

al-time constrained embedded systems,” in Proc. Int.

Conf. ASP-DAC, Jan. 2007, pp. 159–164.

[19] [17] S. Y. Hwang, H. J. Park, and K. S. Jhang, An Effi-

cient Implementation Method of Arbiter for the ML-

AHB Busmatrix. Berlin, Germany: Springer-Verlag,

May 2007, vol. 4523, LNCS, pp. 229–240.

[20] [18] E.-G. Jeong, J.-G. Lee, K.-S. Jhang, J.-A. Lee, and D.

Har, “Asynchronous layered interface of multimedia

socs for multiple outstanding transactions,” J. VLSI

Signal Process. Syst., vol. 46, no. 2/3, pp. 133–151, Mar.

2007.

[21] [19] S. Y. Hwang, H. J. Park, and K. S. Jhang, “An im-

plementation and performance analysis of slave-side

arbitration schemes for the ML-AHB busmatrix,” in

Proc. Int. Conf. ACM Symp. Appl. Comput., Mar. 2007,

vol. 2, pp. 1545–1551.

http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.opencores.org/?do=project=wb_conmax

